Hadrons Fall2023

HW3 due 29/12/2023

(42 points for handing in on time)

Q1 SU(2) Current Algebra.

a) Given the Lagrangian

L= / @3 4(z) (10" — 1) q(x)
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where 7¢ = 15 are the generators of SU(2), o are the Pauli matrices.

Derive an expression for the conserved charges Q¢ and Q% . Take 2° = 0
for simplicity.

b) Construct the Hamiltonian H, and compute the commutators

@V, H]
[QZ&V’H]'

Recall the anti-commutation relations among field operators (equal time),
e.g.,

a T — =\ ca
{0"(2),¢"(y)"} = 6@ (@ — ) 6",
and vanishes for fields of same type.
State the conditions on 7 for Qf, to be conserved. What about Q%?

¢) Show that

Q4. [Q%y H| = / q(x) {7, {r%, m}} q(2).

This is the key step to proving the Gell-mann-Oakes-Renner relation:
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Take m, = mq = 5 MeV, plug in the physical values of m, and f; and

obtain the value of the chiral condensate (uu) = (dd).

o d) Show that the charges satisfy

[QV, Qv] = ie™Qy,
[QZXV’ QIAV] = ieach%’
and work out [Q%, Q%/]-

Verify that the Left-Right charges

1

QT = 3 (Qv +Qav)

Qh =5 Qv — Qav)

are decoupled, i.e.

[QF, Q%] = i€ Q5
[Q%, Q%] = ie™Q%
[Q%,Q% = 0.

Q2 Self-energy (part IT).

e a) Prove the Feynman parametrization:

1 /1 1
—_— = dx .
AB 0 (zA+ (1 —z)B)?

e b) The self energy X of a resonance is obtained from

> —iz/ d*q 1 1
rR=1 (2m)* ¢2 —m3 4146 g5 —m3 +i6

where
q1 =dq
@=P—q
PQZS:(PO)2_p'2

are Minkowski 4-vectors. Use the Feynman parametrization to show that
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where

e ) After a shift of integration variable and a Wick’s rotation:
d*q — id*qg
¢ = —ap =—(¢i + 4

-t [ G
9 qE+A)

where ¢g is in Euclidean space.

we obtain

Use the Schwinger proper time regularization and perform the momentum
integral. Show that
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Yr= In A :
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This is the starting point of Q2 in HWO02.

Hint: Recall the Schwinger proper time regularization scheme

/ dt —tA

lnA——/ dt — (_tA—e_tI).
0

The following relation is also useful:

A—2=/ dtte tA.
0

Q3 Schwinger Proper Time Regularization (part II)

e a) Recall the use of Schwinger proper time regularization (HW02, Q1)
to calculate

/ dps 1 _ 1
oo 2T PR W? 2V?

Now consider the divergent integral
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Use the Schwinger proper time technique to regulate the integral, i.e. replace
the lower limit of t — %, and show that

o 1 1 2
Ww;A:—/ dt — ——=e ™" 4+ C.
[ ] 1/A2 t% 2ﬁ
C is an integration constant.

e b) Study the integral at large A. Show that

Wiw; A] = —\//\7? +w+ O(1/A).

o ¢) This suggests the definition of a physical W function:
Wonys. [w] = lim  (Ww; A] — W[0; A]) = w.

Re-derive the previous result (again!) via

< d 1 1 9
/ b = Wonys. [w].

oo 2T PR W? 2wOw

Q4 Klein-Gordon field equation.

e a) Show that the time-ordered 2-point function (via a contour integra-
tion)
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3
:/ ¢’p 1 By s @)

(2m)% 2E(p)
where E(p) = /p? + m2.
e b) Show that

e~ (z—y)

(8% +m?) (O[T {¢(2)d(y)}]0) = —i6 (& —y).
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