Hadrons Fall2023

HW4 due 30/01/2024

(+2 points for handing in on time)

Q1 SU(2) Transformation for Composite Operators.

- a) Given the vector (V) and axial vector (AV) transformations

$$
\begin{aligned}
& q \rightarrow e^{-i \alpha_{V}^{a} \tau^{a}} q \\
& q \rightarrow e^{-i \gamma_{5} \alpha_{A V}^{a} \tau^{a}} q
\end{aligned}
$$

work out (to leading order in α 's) the transformations of the operators

$$
p 1=\bar{q}(x) q(x)
$$

and

$$
p 2=2 i \bar{q}(x) \gamma_{5} \tau^{a} q(x)
$$

under V and AV .

- b) Construct the transformation rules for σ and π^{a} fields such that

$$
\bar{q}(x)\left(\sigma-2 i \pi^{a} \gamma_{5} \tau^{a}\right) q(x)
$$

is invariant under V and AV .

Q2 Model of Resonances.

A simple model of the scattering matrix S for a resonance exchange is given by

$$
\begin{aligned}
S & =e^{2 i \delta}=1+2 i q f(s) \\
f(s) & =\frac{K(s)}{s-m_{\text {bare }}^{2}-\Sigma(s)}
\end{aligned}
$$

where $\delta(s)$ is the scattering phase shift, f is the scattering amplitude of a resonance exchange. The proportionality constant K is irrelevant but can be worked out:

$$
K=\frac{2 \operatorname{Im} \Sigma}{2 q(s)}
$$

where $q(s)$ is the COM momentum.

- a) Prove the identity:

$$
e^{2 i \delta}=1+2 i \sin (\delta) e^{i \delta}
$$

- b) Write down an expression of the phase shift in terms of $\Sigma(s)$.
- c) The self energy of a P-wave resonance, after a (rather tedious) QFT calculation (with some additional manipulations), gives

$$
\begin{aligned}
\Sigma_{R}(s) & =-\frac{g^{2}}{8 \pi^{2}} \int_{0}^{1} d x \Delta \ln \Delta \\
\Delta & =x m_{1}^{2}+(1-x) m_{2}^{2}-x(1-x) s-i \delta
\end{aligned}
$$

Show that the imaginary part reads

$$
\operatorname{Im} \Sigma_{R}=-\frac{4}{3} \times\left(\frac{1}{2} g^{2} \frac{q^{3}}{4 \pi \sqrt{s}} \theta\left(\sqrt{s}-m_{1}-m_{2}\right)\right) .
$$

(Compare with Q2 in HW2, a $q(s)^{2}$ factor naturally emerges!)

- d) Adjust the two parameters: $m_{\text {bare }}$ and g^{2} such that the model qualitatively describes the $\Delta(1232)$ resonance. Plot the result against \sqrt{s}.

Q3 Zeta Functions

- a) The Riemann Zeta function is defined as

$$
\zeta_{\hat{R}}(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Show that

$$
\begin{aligned}
\left.\frac{d}{d s} \zeta_{\hat{R}}(s)\right|_{s \rightarrow 0} & =-\sum_{n=1}^{\infty} \ln n \\
& =-\operatorname{tr} \ln \hat{\mathrm{R}}
\end{aligned}
$$

where \hat{R} is an operator with eigenvalues $n=1,2,3, \ldots$.
This allows a generalization of the definition of Zeta function for an arbitrary operator \hat{O} (with eigenvalues λ_{n}) via

$$
\zeta_{\hat{O}}(s)=\sum_{\lambda_{n}} \frac{1}{\lambda_{n}^{s}}
$$

and

$$
\zeta_{\hat{O}}^{\prime}(0)=-\ln \operatorname{det} \hat{O}
$$

- b) Consider (again! HW03 Q3) the integral

$$
\mathcal{I}=\int_{-\infty}^{\infty} \frac{d p_{4}}{2 \pi} \ln \left(p_{4}^{2}+\omega^{2}\right)=\text { Div. }+\omega
$$

Use the Riemann summation to show that

$$
\begin{aligned}
\mathcal{I} & =\Delta p \times \ln \operatorname{det} \hat{D} \\
& =-\Delta p \times \zeta_{\hat{D}}^{\prime}(0) .
\end{aligned}
$$

where the operator \hat{D} has eigenvalues

$$
(2 \pi n \Delta p)^{2}+\omega^{2}
$$

with n being integers

$$
n=-\infty, \ldots \infty
$$

- c) Show that

$$
\begin{aligned}
\zeta_{\hat{D}}(s) & =\frac{1}{\omega^{2 s}}+2 \sum_{m=1}^{\infty} \frac{1}{\left[(2 \pi m \Delta p)^{2}+\omega^{2}\right]^{s}} \\
& =\frac{1}{\omega^{2 s}}+2 \zeta_{\hat{A}}(s) .
\end{aligned}
$$

where the operator \hat{A} has eigenvalues

$$
(2 \pi n \Delta p)^{2}+\omega^{2}
$$

with n being integers

$$
n=1,2, \ldots \infty .
$$

- d) Derive the following expression:

$$
\ln \operatorname{det} \hat{A}=\zeta_{\hat{R}}(0) \ln \left[4 \pi^{2}(\Delta p)^{2}\right]-2 \zeta_{\hat{R}}^{\prime}(0)+\ln \frac{\sinh \left(\frac{\omega}{2 \Delta p}\right)}{\frac{\omega}{2 \Delta p}} .
$$

- e) Using the fact that

$$
\begin{aligned}
\zeta_{\hat{R}}(0) & =-\frac{1}{2} \\
\zeta_{\hat{R}}^{\prime}(0) & =-\frac{1}{2} \ln (2 \pi),
\end{aligned}
$$

verify (finally!) that

$$
\begin{aligned}
\mathcal{I} & =-\Delta p \times \zeta_{\hat{D}}^{\prime}(0) \\
& =\omega
\end{aligned}
$$

Note that the divergent part derived previously disappears!

Q4 A simple model of SCSB .

Consider a 4 -fermion interaction model

$$
Z=\int D \psi D \bar{\psi} e^{\int \bar{\psi}(i \gamma \cdot \partial-m) \psi+G(\bar{\psi} \psi)^{2}}
$$

Note that the integral is over an Euclidean space time.

- a) Prove the relation

$$
e^{\int \frac{g^{2}}{2 m_{G}^{2}}(\bar{\psi} \psi)^{2}} \propto \int D \sigma e^{\int\left(-g \sigma \bar{\psi} \psi-\frac{1}{2} m_{G}^{2} \sigma^{2}\right)}
$$

and with this rewrite the 4 -fermion interaction model as

$$
Z \rightarrow \int D \sigma e^{\ln Z_{F}\left(M_{F}=m+g \sigma\right)-\int \frac{1}{2} m_{G}^{2} \sigma^{2}} .
$$

where $Z_{F}\left(M_{F}\right)$ is the partition function for free fermions

$$
\begin{aligned}
\ln Z_{F}\left(M_{F}\right) & =\operatorname{tr} \ln \left(i \gamma \cdot \partial-M_{F}\right) \\
& =V_{4} \int^{\Lambda} \frac{d^{3} k}{(2 \pi)^{3}} 2 \sqrt{k^{2}+M_{F}^{2}}+\ldots
\end{aligned}
$$

where $V_{4}=\beta V$ is the Euclidean 4-volume. Identify G in terms of g and m_{G}. Notice the similarity with Fermi coupling constant for weak interaction.

- b) Suppose the functional integral over σ is dominated by a certain $\bar{\sigma}$, such that

$$
Z=\int D \sigma e^{\ln Z_{F}\left(M_{F}=m+g \sigma\right)-\int \frac{1}{2} m_{G}^{2} \sigma^{2}} \approx e^{-V_{4} \Gamma(\bar{\sigma})}
$$

Derive a condition for $\Gamma(\bar{\sigma})$ based on the steepest descent. This is called the gap equation.

- c) Solve the gap equation numerically. (You may set $g=1$.) Plot σ / Λ versus G for $m=0$ and $m \neq 0$. Derive an analytic expression for the critical coupling for the former case. What is the order of the phase transition?
- d) Find an explicit expression of the condensate via

$$
\langle\bar{\psi} \psi\rangle=-\frac{\partial}{\partial m} \frac{\ln Z}{V_{4}}
$$

Verify that the condensate is negative. In the model, one can compute it via

$$
\begin{aligned}
n_{S}=\langle\bar{\psi} \psi\rangle & =\frac{\partial}{\partial m} \Gamma(\langle\sigma\rangle, m) \\
& =\frac{\partial}{\partial m} \Gamma(\langle\sigma\rangle, m)+\left.\left(\frac{\partial}{\partial \sigma} \Gamma(\sigma, m) \frac{\partial \sigma}{\partial m}\right)\right|_{\sigma=\langle\sigma\rangle}
\end{aligned}
$$

Explain why the second term will not contribute and relate the condensate to σ. (This is model dependent!)

